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1 Introduction

The overall goal of this project is to develop, implement, and evaluate methods for improving
image quality in dynamic magnetic resonance imaging. We focus specifically on dynamic
contrast-enhanced (DCE) imaging of breast cancer patients. The fundamental challenge in
dynamic MRI is the tradeoff between spatial resolution and temporal resolution. In addressing
this problem, most traditional dynamic acquisition methods and associated reconstruction
methods have been based on operations in the data domain, known as k-space, implicitly
assuming that the object varies smoothly in time. We explore reconstruction methods that
instead use explicit temporal models in object space. We develop iterative methods for fitting
these models to the measured k-space data using regularized estimators without attempting
to synthesize any of the ‘missing’ k-space data. We hypothesize that DCE-MRI quality
can be improved using our proposed reconstruction scheme which includes explicit temporal
regularization in object space.

2 Body

2.1 Reconstruction Model and Cost Function Design

Our proposed method for reconstructing DCE MR images is based on minimizing a three
term image domain cost function. We call our method Temporal Regularization Use in Image
Reconstruction (TRUIR). The first term in the cost function is a data fidelity term, which
ensures that the image estimate is consistent with the measured data. The second and
third terms in the cost function are weighted spatial and temporal penalty terms. We use
these terms to incorporate our a priori knowledge about the object, namely that there is a
certain smoothness expected in both space and time. The spatial regularizer penalizes large
differences between neighboring pixels in space and the temporal regularizer penalizes large
differences between neighboring pixels in time. There are regularization parameters α and
β that determine the relative weighting within the cost function of the spatial and temporal
regularization terms, respectively.

In the past decade the idea of using multiple receiver coils to simultaneously acquire MR
data has been introduced and the practice is now widespread [1–3]. This is known as parallel

imaging and, in general, reduces the required scan time. Therefore we deemed it important
to incorporate parallel imaging into our methods and have done so.

In addition to the work discussed in the following sections, this year we have added many
tools and functions to the group’s code base, including the creation of a new data object
to assist in TRUIR reconstructions. These additions will be available to fellow and future
students and researchers, which will help ensure the long-term progress and viability of this
project.
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2.2 Choice of Regularization Parameters

A challenging aspect of any regularized formulation is choosing appropriate regularization
terms, as well as determining the relative weights of these terms. In our formulation, the
weighting of these terms is implemented with temporal and spatial regularization parameters,
α and β. Regularization parameter choice can significantly influence the quality of the recon-
structed images. For practical use of our reconstruction approach, one must understand how
the regularization parameters α and β in the cost function affect the reconstructed images. For
TRUIR reconstruction of dynamic image sequences, the temporal regularization parameter
α is of particular importance. Essentially we want to use an α that is large enough to pro-
vide adequate “connectivity” between the frames, but small enough so that the reconstructed
image sequence correctly reflects dynamic changes in the object.

We aimed to address the issue of regularization parameter choice by analyzing the res-
olution properties of the TRUIR method. To do this, we are examining the local impulse
response in space and time. Our initial evalution looked at the spatial and temporal resolu-
tion of a TRUIR formulation for a single coil acquisition and found an expected relationship
between β and spatial resolution, and α and temporal resolution [4]. Similar analysis of
penalized-likelihood reconstruction for (static) tomography was presented in [5]. We are now
evaluating the effects of the regularization parameter choice on the full TRUIR formulation,
which includes parallel imaging. We have found that the analysis for the multi-coil case is
significantly more complicated than the single coil case, and this is an ongoing area of research
for this project.

2.3 Phase Encode Sampling Strategies

Because the data in most dynamic MR acquisitions is severly undersampled, the quality of
most dynamic reconstruction schemes is heavily dependent on which k-space locations are
sampled. We expect this to hold true for our TRUIR as well. We are in the process of
exploring a variety of 2D phase encode (PE) sampling strategies to determine which have
optimal temporal/ spatial resolution tradeoff for the TRUIR method.

The TRUIR formulation gives us some flexibility in terms of what we consider to be one
time frame. An acquired set of data can be grouped in different ways to produce different
reconstructed image sequences. That is, with a given amount of collected data, one can
decide during post processing how many image frames one would like to reconstruct. For a
given amount of data, reconstructing more frames means there is less data grouped in each
frame. Traditionally, this would result in severe undersampling artifacts in the resultant image
sequence, but because the TRUIR formulation includes an explicit temporal roughness penalty
that enforces some connectivity between time frames, there is potential to have flexibility
in the number of reconstructed frames (equivalently, frame rate), while maintaining image
quality.

To date, our focus has been on two phase encode sampling strategies. First, we are
looking at the sampling pattern that is currently in use on our clinical scanner. We will refer
to this as the original pattern. This is an elliptically shuttered, partial Fourier pattern that is
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undersampled in the ky direction by a factor of 2, where samples fall on a cartesian grid and
are acquired starting at DC and then gradually moving out to the higher frequencies. The full
PE sampling pattern is shown in Fig. 1, where the order in which the samples are acquired is
indicated by the darkness of the circle. The darker circles represent locations that are sampled
earlier in the scan and ligher circles are locations that are sampled later, i.e., the overall
sampling occurs from low frequency to high frequency. For the current reconstuction method
used by the clinical scanner, the pattern shown in Fig. 1 is collected for each reconstructed
frame.

The second sampling pattern we are looking at is composed of the same sample locations
as the original one, but acquired in a different order. Our reordering scheme is based on the
premise of approximately uniformly sampling (in time) the higher and lower frequencies in the
original sampling pattern. One implementation of the reordered sampling scheme is show in
Fig. 2, where again the darker circles are earlier samples and lighter circles are later samples.

Figure 3 shows another comparison of the two PE trajectories. The PE locations sampled
during the first half of a full acquisition are shown for the original trajectory (left), and
the reordered (“new”) trajectory (right). During the first half of acquisition, the original
trajectory covers only the low frequencies, while the reordered trajectory covers the entire
range of frequencies of a full acquisition. This is true not only for the half frame case, but
for any temporally adjacent subset of samples. For a given time period, a subset of samples
acquired according to the reordered trajectory will cover a wider range of spatial frequencies
than those acquired with the originally ordered trajectory. Results from image reconstructions
using both of these sampling patterns are presented in conjunction kinetic parameter estimates
in Section 2.4.

As this project continues, we plan to explore other PE acquisition patterns and orderings,
and to evaluate the resulting reconstructed image sequences. In all PE sampling schemes,
we will maintain the same number of samples as the original sampling pattern, but will
examine various trajectories such as variable density trajectories, pseudo-random trajectories
(e.g. Poisson disc sampling), as well as trajectories that sample higher frequency locations
that are outside the range of the current PE sample pattern.

2.4 Kinetic Parameters

In dynamic contrast-enhanced (DCE) MRI, a contrast agent is used to enhance the MR
images. The uptake of contrast agent in tissue has been shown to be clinically important
in detection and diagnosis of breast cancer, as well as other cancers. The contrast agent
is injected into the subject’s blood stream and as it travels through the body, it affects the
underlying physical mechanisms of MRI and thereby alters the appearance of various tissues in
the MR image [6–9]. The enhancement characteristics of tumors differ from those of healthy
tissue; enhancement characteristics also differ between healthy and benign lesions. These
differences in enhancement arise from differences in vascular permeability as well as differing
angiogenic properties [10].

Standard parameters are used to measure the kinetics of DCE-MRI, including the volume
transfer constant, KTrans, and the rate constant, kep, [11]. One of the aims of this project is
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Figure 1: Phase encode sample locations and order of the original k-space trajectory, which is
currently in clinical use. Darker circles represent frequency locations that are sampled earlier
in the scan, while light circles represent locations sample later during the scan.
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Figure 2: Phase encode sample locations and order of our reordered k-space trajectory. Darker
circles represent frequency locations that are sampled earlier in the scan, while light circles
represent locations sample later during the scan. The sampled frequencies are the same as
those in Fig. 1, but the order in which they are sampled has been revised.

−50 0 50−50
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50
first half of orig PE locations

−50 0 50−50

0

50
first half of new PE locations

Figure 3: Phase encode sample locations that are acquired during the first half of the original
trajectory (left), and the first half of the reordered trajectory (right). For a given time period,
a subset of samples from the reordered trajectory covers a wider range of spatial frequencies
than the original trajectory.
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Figure 4: True enhancement curves used in our simulations of slow, moderate and rapidly
enhancing lesions.

to evaluate the utility of our reconstructed image sequences to provide accurate estimates of
these clinically important kinetic parameters, and this has been a focus of this year’s work.

We performed simulations based on digital phantoms to examine the kinetic parameters
estimated from a TRUIR reconstructed image sequence compared to kinetic estimates based
on a traditional frame-by-frame (homodyne + SENSE) reconstruction method [2, 12]. The
digital phantom included three “lesions”, representing slow, moderate, and rapidly enhancing
lesions. We used realistic enhancement curves for the lesions, which we computed using
mathematical models that represent the underlying physiological processes [11, 13], as well
as unique kinetic parameters for each lesion. The modeled enhancement curves for the three
lesions are shown in Figure 4.

We also compared reconstructions using the original PE trajectory to those using the
reordered trajectory outlined in Section 2.3. Representative reconstructions are shown in Fig-
ures 5 and 6. Figure 5 shows a traditional frame-by-frame reconstruction of the data using
the original PE order. We simulated 12 frames of the full k-space trajectory, therefore the
traditional reconstruction yields 12 frames as well. Figure 6 shows a 24-frame TRUIR recon-
struction of data collected using the reordered PE sampling pattern. Due to the flexibility in
the TRUIR formulation, we are able to reconstruct 24 image frames from the same amount of
data required for a 12 frame traditional reconstruction, without much loss of image quality.
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Figure 5: Traditional frame-by-frame reconstruction of the dynamic digital phantom, using
the original PE sampling order.
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Figure 6: TRUIR reconstruction of the dynamic digital phantom, using the reordered PE
sampling scheme.
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Figure 7: Enhancement curves derived from image sequences reconstructed using tradi-
tional/conventional (“conv”) and TRUIR reconstruction, and the original and reordered
(“new”) PE sampling schemes. Top: slowly enhancing lesion. Middle: moderately enhancing
lesion. Bottow: rapidly enhancing lesion. For all three lesion types, the reordered PE scheme
yielded more accurate enhancement curves, both for traditional reconstruction and TRUIR.

Figure 7 shows enhancement curves measured from conventional and TRUIR reconstruc-
tions, using both the original PE order as well as the reordered PE locations (“new” in the
figure caption). The true (simulated) value of the signal intensity is show as well, for reference.
For all three types of lesions, the reordered PE scheme yielded more accurate enhancement
curves, both for traditional reconstruction and TRUIR. Enhancement curves from traditional
and TRUIR reconstructions which both used the reordered PE scheme did not differ signifi-
cantly in this instance.

As discussed in Section 2.4, TRUIR reconstructions are highly dependent on the regulariza-
tion parameters, particularly the temporal regularization parameter, α. We completed TRUIR
reconstructions over a wide range of values for α (from log2 α = −10 to log2 α = 20), and then
computed the kinetic parameters for each lesion based on these reconstructions [6–9, 11, 14].
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As expected, the estimated values for KTrans and kep varied immensely over the range of α,
as can be seen in Figure 8. This figure shows the percent error in the estimates of the the rate
constant, kep, and the transfer constant, KTrans, vs α for 12-frame traditional reconstructions
using both the original and new PE order, and 24-frame TRUIR reconstructions using both
PE ordering schemes. The left column of plots show the percent error in estimates of the rate
constant, kep, for the slow (top), moderate (middle), and rapidly enhancing lesion (bottom).
The the right column of plots show the percent error in estimates of the transfer constant,
KTrans, for the slow (top), moderate (middle), and rapidly enhancing lesion (bottom). The
percent error for the conventional reconstruction methods is a flat line since this frame-by-
frame method does not depend on α. While the results are far from conclusive, we can see
that using a TRUIR temporal regularization parameter value of ∼ 210 yielded the best overall
results for kinetic parameter estimation in this study.

2.5 Deviations from Original Statement of Work

Our original project proposal included validating TRUIR on real patient data that has been
collected as part of a different study at our institution. Unfortunately, we have since discovered
that the data collected during that study does not include all of the necessary data for us to
perform our own reconstructions. Specifially, scan-specific sensitivity maps are required for
reconstruction of multi-coil data, but the baseline data required to compute these maps has
not been saved, as it was not needed for the other study. In the absense of available patient
data, but still wanting to show results using real data from the scanner, we now plan to
evaluate TRUIR by conducting MR experiments collecting real scanner data from a physical
dynamic phantom.

3 Key Research and Training Accomplishments

• Continued investigation of choice of algorithms’ regularization parameters based on
desired spatial and temporal resolution.

• Explored 2D phase encode sampling strategies to determine how sampling patterns
affect TRUIR reconstructions, and to validate the flexibility of the TRUIR formulation.

• Implemented realistic simulations using mathematical models that relate enhancements
in MR images to the underlying physiological behavior of both healthy and diseased
tissues.

• Computed kinetic parameters of tissue types from TRUIR reconstructed image se-
quences and compared to traditional reconstructions.

• PI earned certification from the University’s Program for Education and Evaluation in
Responsible Research and Scholarship (PEERRS) during this award period.
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Figure 8: Kinetic estimates derived from image sequences reconstructed using tradi-
tional/conventional (“conv”) and TRUIR reconstructions, and the original and reordered
(“new”) PE sampling schemes. Left column shows the percent error in kep estimates vs the
temporal regularization parameter, α. The right column shows the percent error in KTrans

estimates vs α. Top row is for the slow lesion, middle row for moderate lesion and bottom
row for the rapidly enhancing lesion.
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4 Reportable Outcomes

• Created new data objects to assist in TRUIR reconstruction. Added many tools and
functions to code base, for use by current and future students and researchers.

5 Conclusion

Dynamic constrast-enhanced MRI studies demand both high spatial and high temporal reso-
lution. We want high spatial resolution to visualize morphology and we want high temporal
resolution to accurately follow the tracer kinetics of the tissue.

We have developed a reconstruction scheme based on an image domain model that does
not attempt any data domain recovery, but rather explicitly uses the assumption of temporal
smoothness in the image domain to estimate the image sequence that best fits the available
data. We continue to investigate resolution-based approaches for choosing the regularization
parameters required by our algorithms. We are exploring a variety of 2D k-space sampling
trajectories to determine which may provide better spatiotemporal resolution with TRUIR,
and have presented some representative results of our studies to date. We have implemented
a method of accurately simulating tissue enhancement based on kinetic parameters and the
underlying tissue physiology, and have used the same mathematical models to derive kinetic
parameter estimates from dynamic image sequences. Overall the TRUIR method has shown
promising results, although there are still many open questions that remain to be answered.
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